\(\int (a+a \cos (c+d x))^2 (A+C \cos ^2(c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx\) [1169]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 196 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {16 a^2 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (17 A+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {8 A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 A (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

8/15*A*(a^2+a^2*cos(d*x+c))*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*A*(a+a*cos(d*x+c))^2*sec(d*x+c)^(5/2)*sin(d*x+c)
/d+2/15*a^2*(17*A+15*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-16/5*a^2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*
c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a^2*(A+3*C)*(cos(1/2*d*x+1/2*
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4306, 3123, 3054, 3047, 3100, 2827, 2720, 2719} \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 a^2 (17 A+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {8 A \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{15 d}-\frac {16 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^2}{5 d} \]

[In]

Int[(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(-16*a^2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(A + 3*C)*Sqrt[Cos[
c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*(17*A + 15*C)*Sqrt[Sec[c + d*x]]*Sin[c
+ d*x])/(15*d) + (8*A*(a^2 + a^2*Cos[c + d*x])*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(15*d) + (2*A*(a + a*Cos[c + d
*x])^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 A (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \cos (c+d x))^2 \left (2 a A-\frac {1}{2} a (A-5 C) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{5 a} \\ & = \frac {8 A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 A (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \cos (c+d x)) \left (\frac {1}{4} a^2 (17 A+15 C)-\frac {1}{4} a^2 (7 A-15 C) \cos (c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{15 a} \\ & = \frac {8 A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 A (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} a^3 (17 A+15 C)+\left (-\frac {1}{4} a^3 (7 A-15 C)+\frac {1}{4} a^3 (17 A+15 C)\right ) \cos (c+d x)-\frac {1}{4} a^3 (7 A-15 C) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{15 a} \\ & = \frac {2 a^2 (17 A+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {8 A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 A (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {\left (8 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {5}{4} a^3 (A+3 C)-3 a^3 A \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{15 a} \\ & = \frac {2 a^2 (17 A+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {8 A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 A (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac {1}{5} \left (8 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^2 (A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {16 a^2 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (17 A+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {8 A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d}+\frac {2 A (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.42 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.49 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {a^2 (1+\cos (c+d x))^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {4 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (12 A \left (1+e^{2 i (c+d x)}\right )+12 A \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+5 (A+3 C) e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+\sqrt {\sec (c+d x)} (3 (16 A+5 C-5 C \cos (2 c)) \cos (d x) \csc (c)+30 C \cos (c) \sin (d x)+2 A (10+3 \sec (c+d x)) \tan (c+d x))\right )}{60 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*(((-4*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*
(12*A*(1 + E^((2*I)*(c + d*x))) + 12*A*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4
, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*(A + 3*C)*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x)
)]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + Sqrt[Sec[c
+ d*x]]*(3*(16*A + 5*C - 5*C*Cos[2*c])*Cos[d*x]*Csc[c] + 30*C*Cos[c]*Sin[d*x] + 2*A*(10 + 3*Sec[c + d*x])*Tan[
c + d*x])))/(60*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(755\) vs. \(2(224)=448\).

Time = 150.16 (sec) , antiderivative size = 756, normalized size of antiderivative = 3.86

method result size
default \(\text {Expression too large to display}\) \(756\)
parts \(\text {Expression too large to display}\) \(1043\)

[In]

int((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-4/15*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2
*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^3*(96*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-20*A*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*
c)^4-48*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*
sin(1/2*d*x+1/2*c)^4+60*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-60*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-116*A*cos(1/2*d*x+1/2*c)*sin
(1/2*d*x+1/2*c)^4+20*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+48*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-60*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+60*C*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2
+37*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*A-5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2
)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2))+15*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*C-15*C*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.14 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 12 i \, \sqrt {2} A a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 i \, \sqrt {2} A a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (3 \, {\left (8 \, A + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 10 \, A a^{2} \cos \left (d x + c\right ) + 3 \, A a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(A + 3*C)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*
I*sqrt(2)*(A + 3*C)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 12*I*sqrt(2
)*A*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 12*
I*sqrt(2)*A*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)
)) - (3*(8*A + 5*C)*a^2*cos(d*x + c)^2 + 10*A*a^2*cos(d*x + c) + 3*A*a^2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*
cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**2*(A+C*cos(d*x+c)**2)*sec(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^2*sec(d*x + c)^(7/2), x)

Giac [F]

\[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^2*sec(d*x + c)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int \left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2 \,d x \]

[In]

int((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))^2,x)

[Out]

int((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))^2, x)